



# EVALUATION OF SUNNHEMP TREATED WITH A BIO-CONTROL AGENT IN SHORT ROTATIONS FOR CONTROL OF ROOT-KNOT NEMATODE (MELOIDOGYNE JAVANICA) DISEASE COMPLEXES

**Kutsaga Research Station Harare, Zimbabwe.** 

T. Mahere, M. Marunda, C. Chinheya, S. Dimbi.

CORESTA AP CONFERENCE, CANCUN, MEXICO

Copyright © Kutsaga. 2023 – All rights reserved

AP2023 - Document not peer-reviewed



#### Presentation Outline



- 1. Introduction
- 2. Main objective
- 3. Materials and Methods
- 4. Results
  - i. Nematode population monitoring
  - ii. Soreshin disease index
  - iii. Root Galling index
- 5. Discussion and Conclusion
- 6. Acknowledgements





#### Background:



- ❖ It has become standard practice, the world over – crop production practices be done in a sustainable manner;
- Integrated Pest Management (IPM)
  Strategy adopted
- Tobacco is no exception;
- In Zimbabwe an IPM Approach to Pest and Disease Mgt is recommended to all growers





#### Introduction



❖ IPM in root-knot nematode control adopted





- Greener nematicides (plant based);
- Biological control testing a wide range from various sources worldwide & intensive work to search for new suitable local isolates
- Cultural control (float tray seedling production method, timing of planting, rotations, relay cropping – G HR1,);



#### Introduction (Cont'd)



- RKN infection has been reported to occur as a complex with other soilborne pathogens notably Fusarium and Rhizoctonia spp. (Kassie, 2019; Back et al., 2002)
- This necessitates a consideration of combinations in developing suitable management options;
- A combination of rotation crops and BCAs is one such option;





Copyright © Kutsaga. 2023 – All rights reserved



#### Main Objective



- To evaluate the efficacy of Sunnhemp in combination with *T. harzianum* (T77) for the management of both root-knot nematodes and,
- soreshin causal agents (Rhizoctonia | Fusarium spp).







# Materials and Methods



#### Study Site:



#### vity. For Sustainability

## **Kutsaga Research Station, Harare, Zimbabwe**



| Location             | 17 ° 55′ S ; 31 ° 08′ E |
|----------------------|-------------------------|
| Altitude             | 1479 m asl              |
| Mean annual rainfall | 750 - 950 mm            |
| Mean summer temp.    | 32°C                    |
| Mean winter temp.    | 18°C                    |

**Soils:** deep and permeable, light textured sandy loams.





- Microplot trial 3 seasons;
- Microplots grown to RKN-Susceptible tomato variety;
- Tomato plants inoculated with M. javanica;







- Tobacco transplanted into microplots - inoculated with soreshin 0.25 g dried mycelium/ planting station at transplanting;
- Crotolaria juncea (Sunnhemp) used.







#### **Rotation cycle procedure**

- Microplots grown to RKN-Susceptible tomato variety; then inoculated with *M. javanica* (5000/p.s.)
- ii. Tomato plants maintained for 8 weeks and then cleared;
- iii. 24 hours before sowing, seed of relay crop (*Crotolaria* juncea - Sunnhemp) treated with Trichoderma harzianum (6-10 g/kg), then sown and maintained for 6 weeks;
- iv. At flowering 6 WAS ploughed under and left to decompose for a further 9 weeks
- For Control plots only steps iii. and iv. not done.









#### **Rotation cycle procedure (contd)**

- Tobacco transplanted into microplots & inoculated with Rhizoctonia solani and Fusarium oxysporum.
- 0.25 g dried mycelium of each pathogen/ planting station at transplanting;
- Trichoderma applied at transplanting  $(0.2 \, \text{g/p.s.})$



#### Materials and Methods



#### 2023\_AF

#### Six treatments as follows:

- 1) Untreated Control (clean)
- Disease Control (RKNs + Complex)
- 3) Trichoderma-treated sunnhemp
- 4) Trichoderma-treated sunnhemp
  - + Trichoderma at planting
- 5) Trichoderma only
- 6) Sunnhemp only





#### Experimental Design



# CRD: 2 x 6 Factorial arrangement replicated 3 times [10 plants/plot];

|    | Factor 1 (Variety) | A  | Factor 2 (Rotations)                                |
|----|--------------------|----|-----------------------------------------------------|
| 1. | K M10              | 1. | Control (with RKNs + soreshin)                      |
| 2. | K RK26R            | 2. | Control ( without disease)                          |
|    |                    | 3. | Trichoderma (T77) at planting                       |
|    |                    | 4. | Sunnhemp 15 WBP                                     |
|    |                    | 5. | Sunnhemp (T77 seed-treated) 15 WBP                  |
|    |                    | 6. | Sunnhemp (T77 seed-treated) 15 WBP+ T77 at planting |

2023\_AF

4P2



### The Procedure (Cont'd)





T77 recovered from root samples

- Soreshin disease assessments 4 and 6 weeks after planting.
- RKN population trends at 5, 10 and 15 WAP;
- End-of-season root galling assessments at 20 WAP;

{**NB**: Trial repeated for 3 seasons}



#### Measurements



# 1) RKN population trends at 5, 10 and 15 WAP;









### Measurements (cont'd)



## 2) Soreshin disease severity using 0-5 scale where;

- 0 no damage
- 1 0 1% Slight damage on stem
- 2 1.1 10% Two lesions on stem, slight root discoloration
- 3 11 25% Several lesions on stem, about one third of root discoloured
- 4 > 26% Extensive lesions on stem, remains of root discoloured
- 5 Plant dead





#### Measurements (cont'd)



3) Root knot damage severity using Nusbaum and Dalton scale where;

| Infection class | Description of degree of galling                                            |
|-----------------|-----------------------------------------------------------------------------|
| 0               | Free from galls                                                             |
| 1               | Trace infection, less than 5 galls                                          |
| 2               | Very slight, trace to 25 galls                                              |
| 3               | Slight, 26 to 100 galls                                                     |
| 4               | Moderate, numerous galls, mostly discrete                                   |
| 5               | Moderate, heavy, numerous galls, many coalesced                             |
| 6               | Heavy, very numerous galls, mostly coalesced, root growth slightly retarded |
| 7               | Very heavy, mass invasion, slight root growth                               |
| 8               | Extremely heavy, mass invasion, no root development                         |





#### Data analysis



- ANOVA Genstat Statistical Package (Version 22)
- 5 % level of significance
- Duncan's post-hoc test was performed for the multiple comparisons.







# RESULTS





## RKN Populations - K M10 - S1





nt not peer-reviewed by COREST



#### RKN Populations - K M10 - S2





- Document not peer-reviewed by CORE



#### Soreshin Data (4 WAP) – S1





Document not peer-reviewed by CORE



#### Soreshin Data (6 WAP) – S1





ocument not peer-reviewed by COREST



#### Soreshin Data (4 WAP) – S2







#### Soreshin Data (6 WAP) – S2





ument not peer-reviewed by CORE



#### Final Mean Gall ratings – S1





ocument not peer-reviewed by CORE



#### Final RKN Gall ratings — S2





ment not peer-reviewed by COR



#### Summary of Results



- Sunnhemp seed-treated with T77 suppressed RKN populations EFFECTIVE;
- Most notable at 10-15 WAP;
- Application of T77 at planting after having a seed-treated relay crop improves the control of both *Fusarium*, *Rhizoctonia* and RKNs





#### Discussion and Conclusion



- Combination of suitable relay crops with T77 provides an effective nematode management option for the Zimbabwean tobacco grower;
- Used in an IPM setting in combination with resistant varieties, recommended cultural control measures and the available greener nematicides;
- Continuous use has greater benefit;
- Continued testing & Bioprospecting required to find more isolates.





#### Acknowledgements



Kutsaga Board And Management



- Kutsaga PHS Staff
- CORESTA Secretariat



hts reserved









Tafadzwa Mahere



tmahere@kutsaga.co.zw



+263 771 523 469



**@Taffymahere23**