ESTIMATION AND PREDICTION OF GENETIC PARAMETERS AND BREEDING VALUES THROUGH REML/BLUP APPROACH

Elaine Cristina Batista¹, Ezequiel de Oliveira¹, Fernando Wergles Santos¹, Eder Leandro Frantz¹, Carlos Eduardo Pulcinelli¹ ¹Alliance One International, Global Center of Research, Development & Deployment, Brazil

INTRODUCTION

Table 1. Wald test for Yield (kg.ha⁻¹), Nicotine (%), Sugar (%) The Mixed Linear Models provides advantages and Quality Index Grade (%) traits referring to the evaluation compared to ordinary linear models. One is the ability to of 14 FC- Virginia hybrids in 11 different environments in the consider variables as random and other variables as fixed. southern region of Brazil.

The objective of this analysis is for the selection of superior genotypes. As the genotypes are a random sample of the hybrids within the trial, the genotypic effects are assumed as random and the consequent use of Best Linear Unbiased Predictor (BLUP) is justified.

OBJECTIVES

To predict the genetic value of tobacco hybrids through their BLUP, using Mixed Linear Models and parameters estimation by the Restricted Maximum Likelihood method (REML), for purposes of selection.

MATERIAL AND METHODS

- In 14 FC-Virginia tobacco hybrids developed One International;
- 4 commercial checks: AOV 405; AOV 413; 326;
- Evaluated traits: Yield, Nicotine, Sugar and Q Grade;
- Environments: 11 environments in the souther Brazil;
- Statistical design: Randomized Complete Blog with 3 replications;
- Statistical analyzes were performed in the JA program (SAS Institute Inc.);
- Linear Mixed Model (LMM) approach using th Maximum Likelihood method (REML);
- Genetic parameters were estimated via genotypic means adjusted and estimated usi Linear Unbiased Predictor (BLUP) procedure;
- The likelihood ratio test (LRT) was performed significance was verified by the Wald test.

RESULTS

Effects	DF	Yield	Nicotine	Sugar	Quality Index	
Genotype	17	55356.504**	0.0637281**	3,1339826 ^{ns}	3.1339826**	
GxE	10	18929.267**	0.019325**	6,3013364 ^{ns}	6.3013364*	
Residual	10	10959185	0.1203052	13,417364	13.417364	
^{ns} , **, * Wald test no	t signifi	cant and significant of	at 1% and 5% respect	ively, by Chi Test Square	9	

Table 2. Predicted average values (BLUP) for the Yield (kg.ha-¹), Nicotine (%), Sugar (%) and Quality Index Grade (%) traits referring to the evaluation of 14 FC-Virginia hybrids in 11 different environments in the southern region of Brazil.

	Construct	BLUP				
	Genolype -	Yield	Nicotine	Quality Index	Sugar	
by Alliance	AOV 815	3909	3.14	79.58	19.82	
-	67G	3906	2.99	79.37	20.23	
AOV 815; K	81G	3846	3.24	79.05	20.04	
	28H	3774	3.68	75.53	19.77	
Quality Index	19H	3744	3.46	80.11	19.48	
	09H	3703	3.34	79.52	20.08	
rn region of	AOV 413	3690	3.34	77.91	20.21	
C	67 G	3677	3.45	79.40	19.86	
ocks (RCBD),	70 G2	3675	3.31	79.80	19.27	
Υ Υ	371	3646	3.98	76.71	19.73	
MP software	051	3611	3.17	77.75	19.56	
	461	3600	3.48	79.67	19.61	
ne Restricted	94F	3524	3.25	78.64	20.48	
	AOV 405	3434	3.50	80.49	19.79	
REML, with	21H	3418	3.33	78.91	19.53	
	24H	3357	3.60	82.35	19.64	
	37J	3333	3.53	79.11	19.84	
ed and the	K 326	3051	3.73	79.25	19.73	
						ĺ

Table 3. Broad-sense heritability- h^2 (%) and selective accuracy- rgg' (%) estimates for the traits Yield (kg.ha⁻¹), Nicotine (%), Sugar (%) and Quality Index Grade (%).

	Trait	h²	rgg'	
	Yield	30.1	54.8	
	Nicotine	31.3	55.9	
	Sugar	3.33	18.2 37.0	
QL	vality Index	13.7		
/brids in	the 11 enviro	onments evaluated.	- virginia lobace	
5000		• 4700		
4500 -			• 4301	
4000 -	• 3821	• 3670	3765 <u>3663</u>	
3500 -		 3343 3287 		
3000 –	2701			
2500 —	• 2701	2415		
2000 —				
1500 -				
1000 -				
1000				

CONCLUSIONS

- superior genotypes;
- the productivity obtained;
- of the breeders.

• The use of the statistical approach of Mixed Lined Models showed to be effective in the selection \vec{o}

It was possible to identify genotypes adapted to certain regions of the study, as well as widely adapted;

• It was possible to identify the environments that provide better performance in terms of the Yield trait based on

This statistical analysis methodology allowed a better estimate of the genotypic values, making the selection $\hat{\mathbf{R}}$ and decision-making process more efficient on the part