Simultaneous determination of six furans in aerosol of heated tobacco products by gas chromatography/mass

BACKGROUND

 Due to the absence of high-temperature pyrolysis and co releases of most harmful components from heated tobac (HTPs) are much lower than those from conventional cigar However, some harmful components were reported to b higher levels than CCs, including furans. Furans, which ar **potentially harmful** to humans, are an important class of **components** in cigarette smoke^[2].

To investigate the release characteristics of furans in the ae To establish a gas chromatography/mass spectrometry (

METHOD

Aerosol collection

For collecting the particle phase and gas phase of aerosol of HTI Cambridge filter pad (CFP) and a XAD–7 sorbent catridge were sorbent catridge was connected between the CFP and the pump

Heated tobacco products Collection for gas phase component Sample analysis

Both CFP and the XAD-7 sorbent catridge were extracted with 20 ((50 µg/mL methyl furoate in propan-2-ol), respectively, for 30 min The extraction solution was analysized by GC-MS equipped with $m \times 0.25 \text{ mm} \times 0.25 \mu \text{m}$) column.

1.Technology Center, China Tobacco Guizhou Industrial Co., Ltd., Guiyang 550009, China 2. Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China

				R	ES	UL	_T(5						
mbustion, the		Tab.1 Li	inear equat	tion and	d corre ma	lation o trix effe	coefficient	ient, limit d recover	of de y	etection ar	nd qua	ntitation,		
rettes (CCs) ^[1] .			Linear			100/	matrix	Low spiked level		Middle spiked level		High spiked level		
released at re harmful or		Compound	range (µg/mL)	r²	(µg/cig)	(µg/cig)	effect	Recovery (%)	RSD (%)	Recovery (%)	RSD (%)	Recovery (%)	RSD (%)	
baked aroma		Furfural	0.09~18.94	0.9999	0.01	0.04	0.94	96.79	5.41	98.32	4.15	100.67	8.51	
		2-Acetylfuran	0.03~6.21	0.999 9	0.01	0.02	1.00	105.29	5.33	103.42	3.19	105.59	3.92	
		5-Methyl-2- furfural	0.05~10.62	0.999 5	0.01	0.03	0.98	99.62	6.4	98.59	4.04	102.58	2.38	
		2-Furanmethanol	0.09~18.59	0.999 8	0.03	0.09	0.96	101.61	6.23	104.1	3.94	108.66	1.33	
		5-Methyl-2- furfural	0.04~8.35	0.999 9	0.02	0.06	0.96	100.15	5.23	102.1	3.12	101.7	2.95	
		5-Hydroxymethyl -furfural	0.36~72.45	0.998 9	0.12	0.39	1.03	95.33	4.78	100.63	6.29	103.35	3.45	
erosol of HTPs; GC/MS) method ^[3-4] .		10 10 5 0 Gelease and <i>Eureural</i> <i>Q.Accontinut</i> <i>Q.Accontinut</i>	an 2. Fural	nmethanol 5.Meth	J.2. Furtural	ethyfturfural		30 20 10 0 <i>Furtural</i> 2	Acetyfur	an Antural Antural Artura	nmethanol 5-Meth	Wi-2-furfural	untural	
Ps and CCs, the used. The XAD–7 of the linear smoking.		Fig.3 The distribution of 6 furans in particle phase and gas phase under (a) ISO regime and (b) HCI regime (a) • Furfural • 5-Methyl-2-furfural • 2-Furanmethanol 45 • 90 • 40 • 80												
Pump		0 0												
0 mL extraction solution	1													
n by shaking. i a HP–INNOWAX (30		Fig.4 The concentrations of furfural, 5-methyl-2-furfural and 2-furanmethanol detetected in the aerosol of HTPs and CCs under (a) ISO regime and (b) HCl regime												

ZHANG Li¹, WANG Bing², DONG Rui¹, YIN Fang¹, TONG Fuqiang¹, JI Houwei¹, LIU Yuming¹, WANG Weiwei^{*1}

Method validation: r^2 : 0.9989~0.9999; LODs: 0.01~0.12 µg/cig, LOQs: 0.02~0.39 µg/cig; **Recoveries:** 95.33%~108.66%, **RSDs**: 1.33% to 8.51%. Distribution: Gas phase and particle phase: Furfural, 5methylfurfural, 2-acetylfuran and 2furanmethanol: the proportions in the gas phase under HCI regime was **higher** than that under ISO regime; **Particle phase:** 5-methyl-2-furanmethanol and 5-0 hydroxymethylfurfural **Release amounts:**The release amounts of furanmethanol, furfural, and 5-methylfurfural in aerosol of some HTPs were higher than those of CCs with a ratio between 1.73 to 5.65. **Temperature:** Under low-temperature heating conditions, the release amounts of six furans in \overline{a} the aerosol of HTPs increased with heating temperature. REFERENCES [1]Schaller J P, Keller D, Poget L, et al. Evaluation of the Tobacco Heating System 2.2. Part 2: Chemical composition, genotoxicity, cytotoxicity, and physical properties of the aerosol[J]. Regulatory Toxicology and Pharmacology, 2016, 81: S27-S47. [2]Bentley M C, Almstetter M, Arndt D, et al. Comprehensive chemical characterization of the aerosol generated by a heated tobacco product by untargeted Qscreening[J]. Analytical and bioanalytical chemistry, 2020, 412: 2675-2685. [3] Sarah Soussy, Ahmad EL-Hellani, Rima Baalbaki, et al. Detection of 5hydroxymethylfurfural and furfural in the aerosol of electronic cigarettes[J]. Tob

Control, 2016,25: 88-93. [4] Kanae Bekki, Shigehisa Uchiyama, Yohei Inaba, et al. Analysis of furans and pyridines from new generation heated tobacco product in Japan[J]. Enviromental Health and Preventive Medicine, 2021,26: 1-8.

Fig5. Influences of different heating temperature on the release efficiencies of six furans

CONCLUSIONS