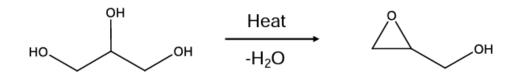
Juul Labs Science

Determination of Glycidol in E-Liquid and Aerosol Samples from ENDS Products by GC-MS

David K. Cook, Beth Stump, Norman Fraley, Kathy Humphries, I. Gene Gillman, Brian Jameson

76th Tobacco Science Research Conference September 24-27th, 2023 Norfolk Virginia


TM and © 2023 JUUL Labs, Inc. This presentation is intended for sharing with the scientific community. It is not intended for advertising or promotional purposes and is not intended for a general consumer audience

Glycidol is detected in combustible cigarettes, heat-not-burn products, and Electronic Nicotine Delivery Systems (ENDS) as a thermal degradation byproduct of glycerin^{1,2,3}.

Listed as a probable carcinogen and constituent for consideration within FDA Premarket Tobacco Application for ENDS^{4,5}.

For the measurement of glycidol in ENDS, published or presented work uses a variety of GC-MS methods including direct injection, cool on column, thermal desorption, and derivatization for detection^{1,2,3,6,7}.

Juul Labs Science

This presentation is intended for sharing with the scientific community. It is not intended for advertising or promotional purposes and is not intended for a general consumer audience.

JuulLabsScienc

2

Reactive molecule that is difficult to analyze due to chemical instability^{2,3,6}

Direct injection GC-MS analysis can lead to *in situ* thermal degradation of glycerin to produce quantifiable levels of glycidol^{2,3,9}.

- Glycerin could convert to glycidol in a GC inlet at temperatures above 220°C
- Glycidol can form a glycidol dimer, starting at 100°C, and at elevated temperatures can convert to glycerin
- A comparison of direct injection and derivatization e-liquid results demonstrated that ~98% of the measured glycidol from direct injection GC-MS was a byproduct of the analytical method

At present, no standardized analytical methodology exists for the determination of glycidol in ENDS e-liquid and aerosol.

3

This presentation is intended for sharing with the scientific community. It is not intended for advertising or promotional purposes and is not intended for a general consumer audience.

To develop and validate a stable, sensitive, and selective method for the determination of glycidol in e-liquid and aerosol samples utilizing a derivatization methodology via gas chromatography-mass spectrometry (GC-MS).

TM and © 2023 JUUL Labs, Inc.. This presentation is intended for sharing with the scientific community. It is not intended for advertising or promotional purposes and is not intended for a general consumer audience.

Direct Injection:

- Artifactual formation of glycidol
- Susceptible to low molecular mass interferences

Cool On-column:

- Improvement from Direct Injection (mitigates artifactual formation)

Thermal Desorption:

- Requires specialized analytical equipment
- Difficult for analysis of e-liquids
- Limitations on aerosol collection (i.e. trapping capacity) and throughput

Derivatization:

- Stable, sensitive, and selective
- Unlikely to form artifactual glycidol during analysis
- Presented methods utilize complex sample prep (multi-step derivatization and/or SPE clean-up)

TM and © 2023 JUUL Labs, Inc.. This presentation is intended for sharing with the scientific community. It is not intended for advertising or promotional purposes and is not intended for a general consumer audience.

Derivatives of Aliphatic Glycols⁸:

- Derivate Type: Acetonide
- Reagent: Acetone / *p*-toluenesulfonic acid (TsOH)
- Reaction: Specific protection group for 1,2 diols.
 The acetonide is a cyclic ketal formed by the reaction of an alcohol (OH) group with a carbonyl group (C=O) within the same molecule.
- Tosylate formation for better nucleophilic substitution

Advantages from presented derivatization methods:

- Removes need for Solid Phase Extraction (SPE) clean-up and reagents (lowers consumable costs)
- Reduces method complexities (i.e. sample preparation length, extensive training, etc.)

Research Articles

The uropygiols: identification of the unsaponifiable constituent of a diester wax from chicken preen glands

<u>Eero O.A. Haahti, Henry M. Fales</u>

TSRC2023(76) - Document not peer-reviewed by CORESTA

Reagent/Chemical	Grade/Purity	
Glycidol	Custom standard in acetone (1000 ug/mL, or equivalent)	
Glycidol d5	Custom standard in acetone (1000 ug/mL, or equivalent)	
Acetone	Optima grade, or equivalent	
Hexane	HPLC or Optima grade, or equivalent	
Hydrogen Bromide	47-49%, or equivalent	
p-Toluenesulfonyl chloride	99%, or equivalent	
Water	in-house dionized (DI), or equivalent	
Sodium Sulfate	Granular anhydrous	
Sodium Bicarbonate	N/A	

Solution Prep:

- 1. ISTD Extraction Solution: Acetone + Glycidol d5 @ 150 ng/mL
- 2. TsCl Solution: Acetone + p-toluenesulfonyl chloride @ 0.15 mg/mL
- 3. Sodium Bicarbonate solution: Add sodium bicarbonate to DI H2O until the solution appears saturated.

TM and © 2023 JUUL Labs, Inc.. This presentation is intended for sharing with the scientific community. It is not intended for advertising or promotional purposes and is not intended for a general consumer audience. Determination of Glycidol in E-Liquid and Aerosol Samples from ENDS Products by GC-MS E-liquid Sample Preparation

- 1. Aliquot 100uL of e-liquid sample (target weight: 0.1 g).
- 2. Add 2mL ISTD Extraction solution.
- 3. Add 30 uL of 0.15 mg/mL TsCl Solution followed by 30uL concentrated Hydrogen Bromide (HBR). Cap a tumble for 15 minutes.
- 4. Add 6mL of D.I. Water and 2 mL of hexane. Cap and tumble for 15 minutes.
- Decant top hexane layer and transfer to vial containing 0.2 to 1.0g of sodium sulfate. Mix well.
- 6. Transfer dried hexane to a 2 mL amber autosampler vial, cap, and analyze via GC-MS.

8

This presentation is intended for sharing with the scientific community. It is not intended for advertising or promotional purposes and is not intended for a general consumer audience.

Juull absScience

Collections performed on a Cerulean SM450-e. Samples are vaped until end of life is reached (EOL). Each regime is puffed in blocks, starting with freshly charged devices, where a set number of puffs is reached before the device is replaced. Each set of devices will be recharged and rotated with fresh batteries during the vaping cycle until completed

Regime	Puff Volume	Duration (seconds)	Collections	Interval (seconds)	Typical Puff Block	Puff Profile
Non-Intense	55	3	1-EOL	30	50	Square Wave
Intense	110	6	1-EOL	30	20	Square Wave

Aerosol Sample Prep:

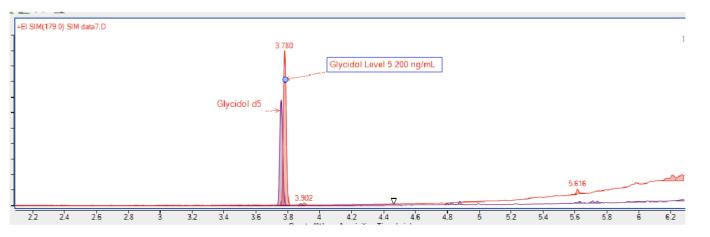
- 1. Following EOL collections, remove Cambridge filter pad (CFP) from its holder and wipe holder with the pad.
- 2. Insert CFP into 25 mL of ISTD Extraction Solution. Cap and tumble for 15 minutes.
- Centrifuge (to remove CFP remnants) and aliquot 5 mL of sample with 50 uL of TsCl solution, quickly followed by 50uL of concentrated HBr. Cap and tumble.
- 4. Add 4 mL of sodium bicarbonate solution and 2 mL of hexane to each vial. Cap and vortex.
- 5. Decant top hexane layer and transfer to vial containing 0.2 to 1.0g of sodium sulfate. Mix well.
- 6. Transfer dried hexane to a 2 mL amber autosampler vial, cap, and analyze via GC-MS

9

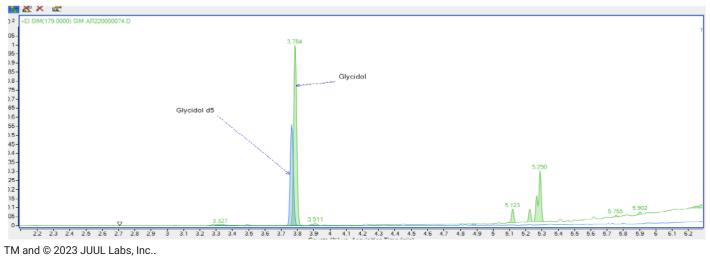
TM and © 2023 JUUL Labs, Inc..

his presentation is intended for sharing with the scientific community. It is not intended for advertising or promotional purposes and is not intended for a general consumer audience.

	2023
Specification	
Agilent 8890/5977B MS	
Agilent DB-5MS UI	
MS	
6.3 min	
Helium	
80°C, ramp 4°C/min to 90°C, ramp 50°C/min to 280°C	
2 uL	
250°C	CORESTA
Primary 179, Secondary 181	Add a set of the set o
Primary 184, Secondary 186	
	Document
	1
e scientific community. It is not intended for advertising or promotional purposes and is not intended for a general	JuulLabsScience.com
e sci	ientific community. It is not intended for advertising or promotional purposes and is not intended for a general



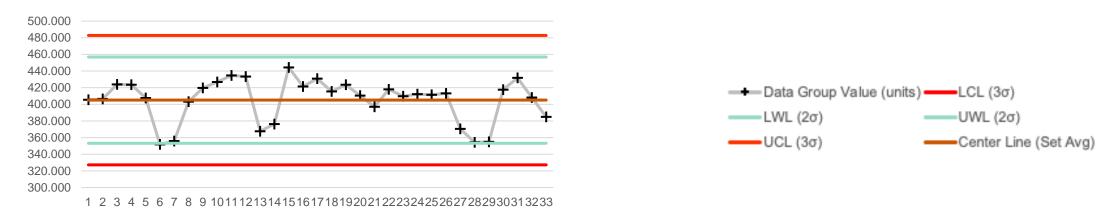
inearity/Range	R² ≥0.995; 10-800 ng/mL				
OD (Instrument)	0.86 ng/mL				
OQ (Instrument)	10 ng/mL				
OD (Sample*)	16 ng/g	21.5 ng/collection			
OQ (Sample*)	180 ng/g	250 ng/collection			
pecificity/Selectivity	Analytes were succe	ssfully determined and overlayed			
ccuracy	80% - 120% Recovery achieved	70%-130% Recovery achieved			
recision	<10% CV	<20% CV			
epeatability	<15%CV	<15%CV			
obustness**	Reported**	Reported**			
tability	Stable for 5 days @ Ambient & (-20°C)	Stable for 8 days @ Ambient &(-20°C)			
erosol Breakthrough	N/A	Pad loading: 1200 mg ACM; Concentrations <10% on second pad			


Juul Labs Science

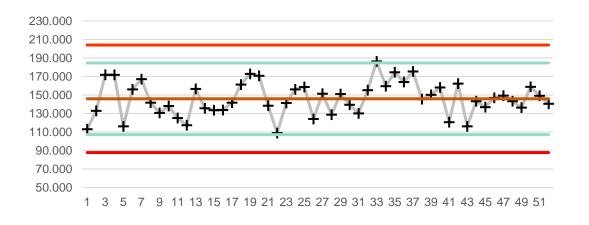
Midpoint Standard:

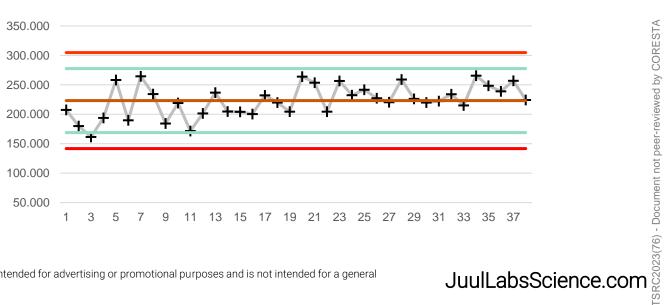
12

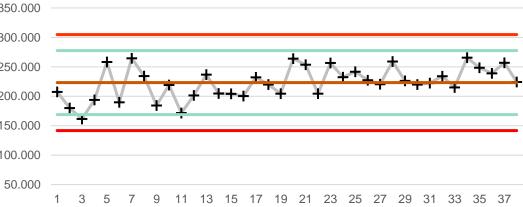
Sample Chromatogram:



This presentation is intended for sharing with the scientific community. It is not intended for advertising or promotional purposes and is not intended for a general consumer audience.


Determination of Glycidol in E-Liquid and Aerosol Samples from ENDS Products by GC-MS **Long Term Precision**


E-liquid


Aerosol

(Non-Intense)

(Intense)

Juul Labs Science

TM and © 2023 JUUL Labs, Inc.. This presentation is intended for sharing with the scientific community. It is not intended for advertising or promotional purposes and is not intended for a general consumer audience

- Glycidol measurements conducted on nine commercially available disposable ENDS products under non-intense puffing.

Test	Aerosol (Non-Intense)
Product 1	LOQ
Product 2	6.55 ng/puff
Product 3	8.94 ng/puff
Product 4	12.3 ng/puff
Product 5	19.5 ng/puff
Product 7	47.6 ng/puff
Product 8	66.9 ng/puff
Product 9	329 ng/puff

14

Determination of Glycidol in E-Liquid and Aerosol Samples from ENDS Products by GC-MS **Conclusion**

- Presented is a high throughput derivatization methodology that reduces the potential artifactual formation at the injection port, and improves the stability, selectivity sensitivity for glycidol determination in ENDS aerosol and e-liquid.
- This method is deemed fit for purpose to accurately determine trace amounts of glycidol in both e-liquid and aerosol samples. All requirements for method validation were met.

TM and © 2023 JUUL Labs, Inc.. This presentation is intended for sharing with the scientific community. It is not intended for advertising or promotional purposes and is not intended for a general consumer audience. 1.Emissions from Electronic Cigarettes: Key Parameters Affecting the Release of Harmful Chemicals, <u>Sleiman et al., 2016</u>.

2.Glycidol Behavior in GC Systems', Fraley, 2019.

3.Evidence for Artefactual formation of Glycidol During the Analysis of Eliquids, <u>Gillman</u>, <u>2021</u>.

4.Harmful and Potentially Harmful Constituents in Tobacco Products; Established List; Proposed Additions; Request for Comments, FDA, 2012.

5.Premarket Tobacco Product Applications for Electronic Nicotine Delivery Systems (Revised)*, <u>FDA, 2023</u>.

6.Determination of Glycidol in E-liquids and Emissions from E-Cigarettes, <u>Rodriguez-</u> <u>Lafuente, 2020</u>.

7. Analysis of Glycidol in E-vapor Products by GC-MS, <u>Zhu, 2022</u>.

8. The uropygiols: identification of the unsaponifiable constituent of a diester wax from chicken preen glands, <u>E.O.A. Haahti, 1967</u>.

9. Glycidol Measurements in Reference Cigarette Smoke Using Direct Injection Gas Chromatography, <u>Schwartz, 2022</u>.

16

Acknowledgements and Questions

17

TM and © 2023 JUUL Labs, Inc.. This presentation is intended for sharing with the scientific community. It is not intended for advertising or promotional purposes and is not intended for a general consumer audience.