Formation of Selected HPHCs in Non-Commercial JUUL2 Devices as Function of Temperature

Juul Labs Science

Hosna Mogaddedi, Bob Moision, Gene Gilman, Kevin Pascual, Angela Huang, Nandita Singh, Venessa Tse, Valerie Schwartz, Sam Anderson, Kate Pearce

76th Tobacco Science Research Conference September 2023

TM and © 2023 JUUL Labs, Inc. This presentation is intended for sharing with the scientific community. It is not intended for advertising or promotional purposes and is not intended for a general consumer audience.

Background

- A major factor influencing formation of Harmful and Potentially Harmful Chemicals (HPHC) is temperature
 - When an e-cigarette is heated, the e-liquid undergoes vaporization, creating an aerosol that is inhaled by the user
 - The temperature at which this vaporization occurs can impact the composition of the aerosol and the formation of HPHCs
- Temperature regulated devices play a crucial role in limiting the formation of HPHCs
- Importance of temperature regulation
 - Reduces the risk of overheating
 - Reduces the thermal degradation of e-liquid which leads to formation of higher levels of HPHCs
 - Ensures a more consistent and controlled aerosolization process

Juul Labs Science

2

Goals

3

Assess the performance of non-commercial JUUL2 devices in terms of:

- Device temperature regulation
- Impact of temperature regulation on limiting the formation of Harmful and Potentially Harmful Constituents (HPHCs)
- Controlled aerosolization process and delivery

Experimental Design

- JUUL2 devices with temperature setpoints:
 - o 247°C, 271°C, 296°C, 321°C
- E-liquid composition: PG:VG (50:50 by weight), 4% added nicotine
- Aerosol collection:
 - Puff volume: 55 mL
 - Duration: 3 seconds
 - Interval: 30 seconds
 - Puff Profile: Square
 - Puff segment: 50 (80 puffs for glycidol)
 - Device Orientation: Vertical 45 degrees
- Condensates collected on CFP's/impingers per test method
 - 3 replicates per test

Juul Labs Science

 Continuous device temperature monitoring as measurement of coil resistance changes

- PG, VG , Nicotine measurements by GC-FID
- Carbonyl measurements by LC-MS
- Glycidol measurements by GC-MS

TM and © 2023 JUUL Labs, Inc.

JuulLabsScience.com

Device Temperature Monitoring During Aerosol Collection

2.0

2.5

2023_TSRC70_Mogaddedi.pdf

TM and © 2023 JUUL Labs, Inc. This presentation is intended for sharing with the scientific community. It is not intended for advertising or promotional purposes and is not intended for a general consumer audience

50

3.0

Device Mass Loss (DML) (mg/puff)

6

This presentation is intended for sharing with the scientific community. It is not intended for advertising or promotional purposes and is not intended for a general consumer audience

Nicotine, VG and PG in Condensate (mg/puff) vs. Temperature

7

This presentation is intended for sharing with the scientific community. It is not intended for advertising or promotional purposes and is not intended for a general consumer audience.

Glycidol Concentration in Condensate (µg/mg) vs. Temperature

8

This presentation is intended for sharing with the scientific community. It is not intended for advertising or promotional purposes and is not intended for a general consumer audience.

Carbonyl Concentration in Condensate (µg/mg) vs. Temperature

Juul Labs Science

intended for sharing with the scientific community. It is not intended for advertising or promotional purposes and is not intended for a general consumer audience

Selected HPHC Emissions for JUUL2 vs. 1R6F Reference Cigarette

- JUUL2 setpoint: 321°C
- Nicotine normalized: mg analyte per mg nicotine

TM and © 2023 JUUL Labs, Inc. This presentation is intended for sharing with the scientific community. It is not intended for advertising or promotional purposes and is not intended for a general consumer audience.

JuulLabsScience.com

23(76) - Document not peer-reviewed by CORESTA

Conclusions

11

- Temperature control of non-commercial JUUL2 devices was studied at various temperature setpoints
 - JUUL2 devices are equipped with precise temperature control mechanisms to effectively avoid temperature overshooting.
 - o DML increases with temperature, exhibiting minimal variability
 - JUUL2 devices ensure steady temperature and delivery, as evidenced by DML and the primary constituents' distribution
 - HPHC concentrations remain constant up to the normal setpoint of JUUL2 and increase at higher temperatures, but remain consistently low indicating the device's proficiency in maintaining uniform delivery.
 - At the highest temperature studied (exceeding the normal operating range by more than 30 °C), the device's HPHCs output is significantly lower compared to a combusted cigarette.
- JUUL2's temperature control enables a more stable and controlled aerosolization process mitigating the formation of HPHCs

Acknowledgements

12

- Hosna Mogaddedi Principal Scientist, Analytical Chemistry
- Bob Moision Principal Scientist, Team Lead, Analytical Chemistry
- Gene Gilman VP Regulatory Product Sciences
- Sam Anderson Director, Firmware Engineering
- Nandita Singh Scientist, Analytical Chemistry
- Kevin Pascual Material Science Engineer
- Angela Huang Research Associate, Analytical Chemistry
- Venessa Tse Research Associate, Formulation Chemistry
- Valerie Schwartz Senior Technical Project Manager, Regulatory Science

Thank you for your attention

Any Questions?

Juul Labs Science

TM and © 2023 JUUL Labs, Inc. This presentation is intended for sharing with the scientific community. It is not intended for advertising or promotional purposes and is not intended for a general consumer audience.