Systemic Insecticide Application at Transplanting – An Assessment of Imidacloprid Placement

Cody Stainback, Matthew Vann, Joseph Cheek, & Jeremy Machacek Department of Crop & Soil Sciences

> Drs. Anders Huseth & Daisy Ahumada Department of Entomology & Plant Pathology

- Best practice for TSWV suppression
 - Predominantly in the form of imidacloprid
 - Historically applied via tray drench
 - Early season Myzus persicae and Epitrex hiritipennis control
- Large producers have ceased tray drench applications
 - Prefer to apply via transplant water solution
- Why?
 - Simplicity: tray drench applications are sometimes inconvenient
 - Reduced injury potential when transplanting conditions are unfavorable (cool/damp)

- Concern that too many products are going into transplant water solutions
 - Fungicides, insecticides, fertilizer(s), biologicals, plant health promoters, etc.
- Observations of plant stand issues every season
- Proposed Idea from Farmers:
 - Transition product placement from directly in-furrow to a short distance from seedling rhizosphere
 - Common practice for grain producers

In-Furrow Application

Sidedress Application

CROP AND SOIL SCIENCES

Research Objectives

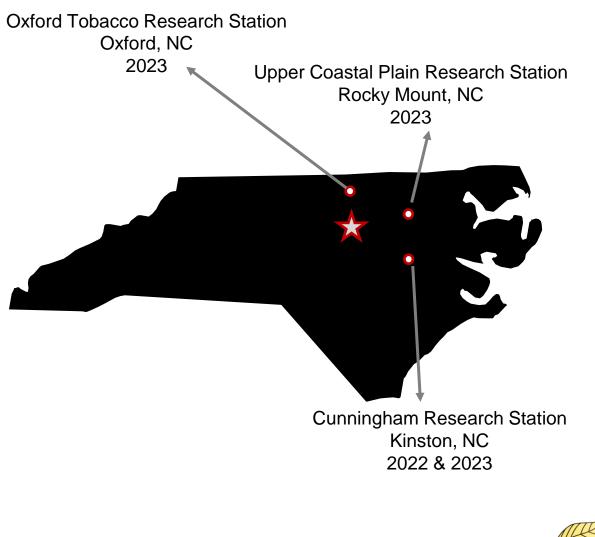

- 1. Quantify early-season insect herbivory
- 2. Measure early-season imidacloprid assimilation
- 3. Document TSWV stand losses
- 4. Determine injury potential from systemic insecticide placement and/or rate

Table 1. List of imidacloprid application rates and placements evaluated for insect suppression efficacy and plant response in 2022 and 2023.

——In-furrow (100 gal/a)——			———Sidedress (20 gal/a)———			
Water Only		+				
Water + Imidacloprid	0.13 lbs ai/a	+				
Water + Imidacloprid	0.26 lbs ai/a	+				
Water Only		+	Water + Imidacloprid	0.13 lbs ai/a		
Water Only		+	Water + Imidacloprid	0.26 lbs ai/a		

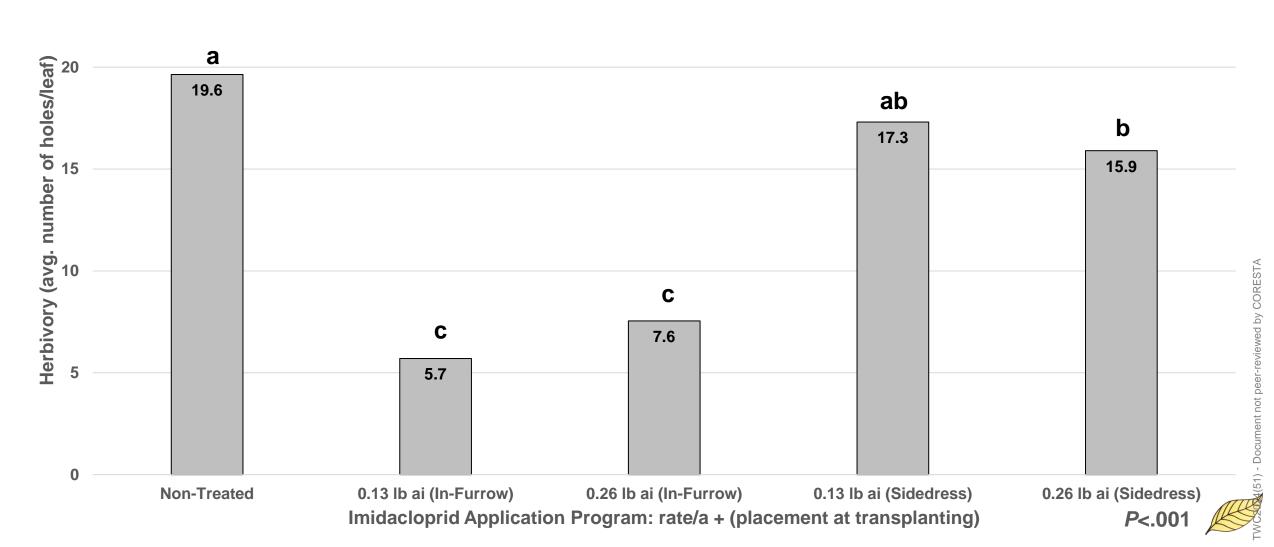
^a Imidacloprid applied as Admire[®] Pro (Bayer CropScience LP, St. Louis, MO, USA)

- Four locations
- Randomized complete block design
 - Four replications per site
- Two row plots
 - Row one = harvest row
 - Row two = destructive sampling row
 - Row width 44 48 in
- Planted with modified mechanical transplanter (previously shown)
 - NC1226 & NC960 (Foley Seed & Service)
 - GL365 (GoldLeaf Seed Co.)
 - Seedlings were not treated with a systemic insecticide in the greenhouse
 - Foliar insecticides not applied from 0-6 weeks after transplanting

Data Collection & Analysis

- 2, 4, & 6 Weeks After Transplanting
 - *E. hiritipennis* herbivory (10 plants/plot)
 - Fresh/dry plant mass and imidacloprid residue (5 plants/plot)
- 8 Weeks After Transplanting
 - TSWV stand loss assessments
- Post Harvest

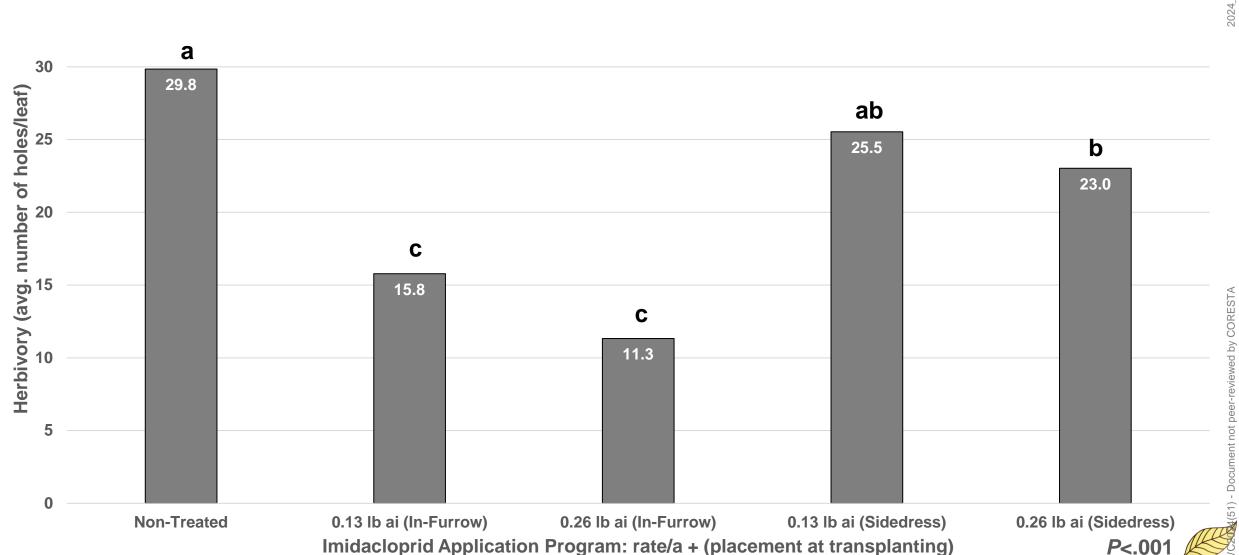
NC STATE UNIVERSITY


- Yield, visual quality, value, and chemistry
- Data Analysis:
 - Proc MIXED (SAS version 9.4)
 - Random Effects = environment and replication
 - Fixed Effects = treatment

25

E. hiritipennis Herbivory – 2 WAT

CROP AND SOIL SCIENCES Flea Beetle Herbivory as Influenced by Imidacloprid Application Rate and Placement – Data are Pooled Across Four Environments

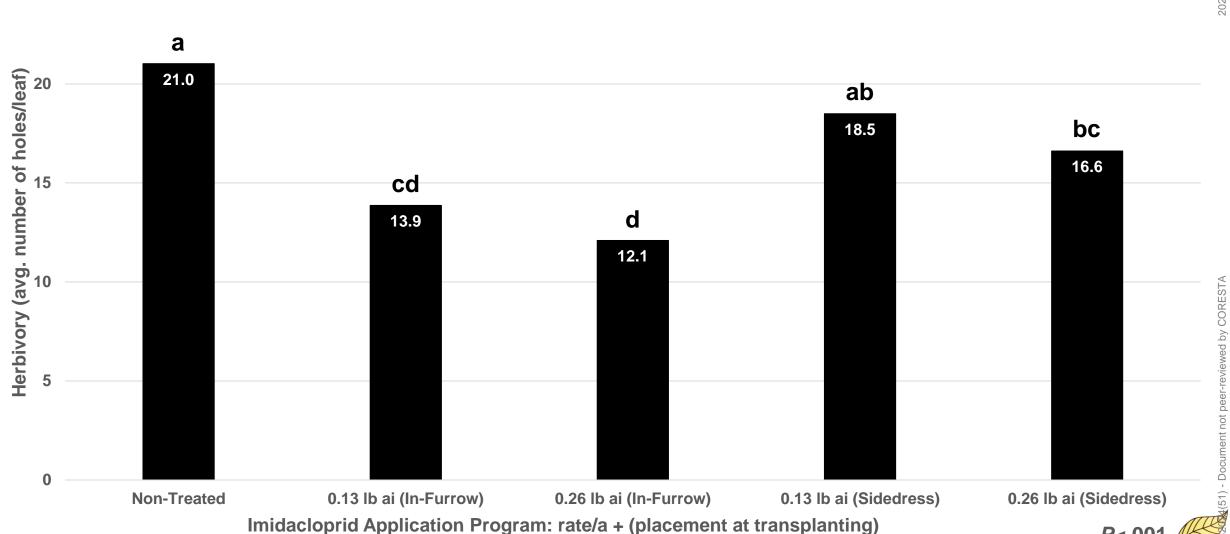


E. hiritipennis Herbivory – 4 WAT

CROP AND SOIL SCIENCES

35

Flea Beetle Herbivory as Influenced by Imidacloprid Application Rate and Placement - Data are Pooled Across Four Environments



E. hiritipennis Herbivory – 6 WAT

CROP AND SOIL SCIENCES

25

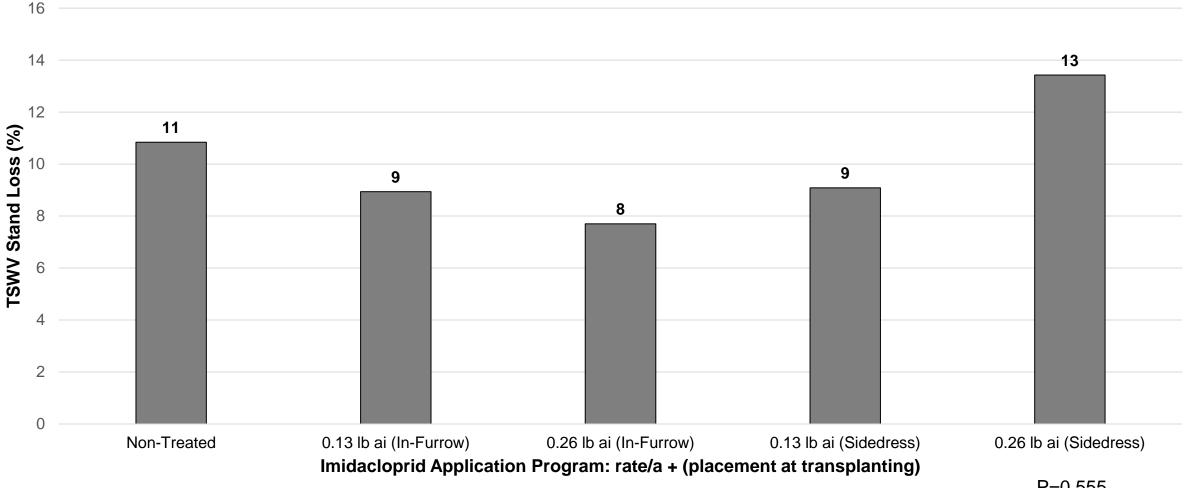
Flea Beetle Herbivory as Influenced by Imidacloprid Application Rate and Placement - Data are Pooled Across Four Environments

Table 2. Foliar imidacloprid residue and tobacco plant dry mass as influenced by imidacloprid application rate and placement.^a

Placement	Imidacloprid Rate	———Residue (ppm)———			——————————————————————————————————————		
	lbs. ai/a	2WAT ^b	4WAT	6WAT	2WAT	4WAT	6WAT
Non-treated	0.00	c			0.76 ab	5.56 bc	40.20 c
In-furrow	0.13	53 b	12 b	2 b	0.81 a	5.83 ab	45.16 ab
In-furrow	0.26	148 a	30 a	3 a	0.78 ab	6.19 ab	44.50 a-c
Sidedress	0.13	11 c	9 bc	2 b	0.71 bc	6.59 a	45.70 a
Sidedress	0.26	9 c	3 c	1 c	0.67 c	4.84 c	40.80 bc

^a Treatment means followed by the same letter within the same column are not significantly different at the α =0.05 level.

^b WAT; weeks after transplanting.

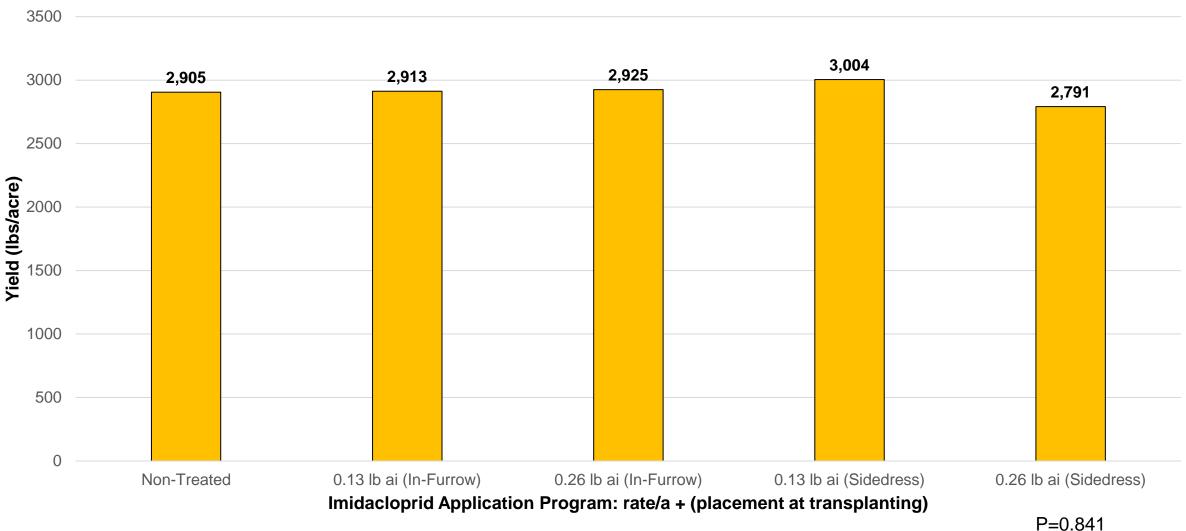

NC STATE UNIVERSITY

^c Residues not reported.

2022 and 2023 TSWV Stand Losses

2022 and 2023 TSWV Stand Loss Eight Weeks After Transplanting – **Cunningham Research Station**

NC STATE UNIVERSITY CROP AND SOIL SCIENCES



P=0.555

CROP AND SOIL SCIENCES

Cured Leaf Yield – Data Are Pooled Across Four Environments

Project Objectives Revisted

- 1. Quantify early-season insect herbivory
- 2. Measure early-season imidacloprid assimilation
- 3. Document TSWV stand losses
- 4. Determine injury potential from systemic insecticide placement and/or rate

- Definitive reduction with sidedress placement vs. in-furrow
- 2. Definitive reduction with sidedress placement vs. in-furrow
- 3. Inconclusive, but reasoning is that sidedress applications may be less effective
- 4. No impact to injury potential

Preliminary Conclusions

- Insecticide sidedress applications are not useful for commercial farmers
- Historical TSWV losses should dictate decisions about tray drench vs. transplant water applications
 - High TSWV areas should utilize tray drench
 - Low TSWV areas can use transplant water
 - All growers should reference the NC State thrips flight monitoring tool
- Producers need to think more in-depth about what they do/don't put in transplant water
- Future Research Opportunity:
 - Base fertilizer applications with liquid products

Acknowledgements

NC STATE UNIVERSITY CROP AND SOIL SCIENCES

- Funding
 - North Carolina Tobacco Research Commission
- Research Sites:
 - Oxford Tobacco Research Station
 - Upper Coastal Plain Research Station
 - Lower Coastal Plain Research Station
- Dr. Vann & The NCSU Tobacco Agronomy team

Thank You!

cgstainb@ncsu.edu

1= 1