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Results

Abstract

Managing insect pests Is one of the challenges in tobacco production that continue to negatively impact tobacco Greenhouse Field trials:
yield and quality, threatening the sustainablility of production in Virginia. Implementing effective, environmentally- ; Pillai’s Trace: F 45 g7, = 11.973, P< 0.001 * Satellite or drone hyperspectral image?
friendly and cost-effective pest management rely on early detection and identification of the stress factor are two of - Treatment
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The resolution of the images collected by
satellite (Fig. 2A) was not sufficient to
classify experimental plots.

the most important components of integrated pest management (IPM). Technological advances In imaging can
offer new tools for effective monitoring and timely implementation of pet management practices. This project was |
developed to determine whether spectral reflectance can be used to detect biotic stresses and if the identified A
spectral signatures are species-specific. Our greenhouse results indicated that spectral reflectance can be used to
detect pest presence as early as one week after infestation, and the spectral signatures associated with the
Infestations were species-specific for tobacco budworm and stink bugs. The extracted bandwidths from the
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The hyperspectral data collected from the
drone (Fig. 2B) classified insect presence
In the field plots (Fig.3)(pillai’s Trace: F 45 390 =
357.83, P< .001).
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collected drone Images were sensitive enough to detect treated and untreated plots Iin the field and those . o
representing 392-503 nm wavelengths were negatively correlated with aphid numbers. |
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Cultivars: CC35 CU263, NC196, K326, K326-LA, and PVH2310 were used In Figure 2: Satellite

B Pillai’s Trace: F 45 ¢;, = 9.427, P< 0.001 104

Component 2 (30 %)
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* Measurements: Spectroradiometer, ADS FieldSpec 4 Hi-Res; S ) @ 4 o o = o « bandwidths collected by the
three repeated measures 1, 2, and 3 weeks after infestation. Component 1 (54.9 %) drone, untreated and control plots
» 15 indices (1) were calculated based on the recorded reflectance (350-2500 G Clustered separately.
nm); indices: CAl, CARI, MCARI, DWSI5, ARI1, CasiNDVI, NDLI, NDWI, 3 : : ; é
NDNI, Clrededge, LCI, Modifled NDVI, reNDVI, HI, and MCARI A (see Canonical . Is the ob d treat t clustering infl d bv th
handouts for description) s the observe | re?a ment clustering influenced by the
* Insect pests used In bioassays: Tobacco budworm Heliothis virescens (Lep., . e number of aphids:
Noctuidae), stink bug Nezara viridula (Hem., Pentatomidae), and tobacco - | Treatment | 0 o
aphid Myzus persicae (Hem., Aphididae) were caged on tobacco plants (Fig 1; - A Bucwors 18 o Unentec
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The southern green stink bug

Tobacco aphid Tobacco budworm

Field trials

Measurements:
* Drone equipped with a Pika L hyperspectral sensor (data collection in June);
collected range: 392-1035 nm
 Satellite imaging by Apollo Mapping (Boulder, CO); MS bands, 8-band MS at
1.2-m; 30-cm Pan
Insect pests: Natural infestations with multiple pests with tobacco aphids being
the primary
Cultivar: CC35, NC196, K326, K326-LA, and PVH2310 are presented here.
Experimental plots: 30 plots analyzed: ‘Control’ with Admire Pro in transplant
water and ‘Untreated’ with no pesticide treatment
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Figure 1: Infestations were detected
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one week after
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Bandwidths

Figure 4: 55 out of the 300
bandwidths ranging between 392
and 503 nm showed correlations
with the number of aphids in
untreated plots.
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Figure 5: The 55 bandwidths
correlated with the number of
aphids, (Fig. 3) successfully
classified control and untreated
plots.

Conclusions & Future directions

» Spectral measurements detected pest presence In the greenhouse as early as one week after infestations in the
greenhouse. However, over time aphid infestations were non-distinguishable from the non-infested controls.

 Although satellite Images alone could not be used to detect biotic stress, drone imaging effectively separated untreated

and control plots.

* In untreated plots, aphid numbers were correlated with the bandwidths corresponding to 392-503 nm wavelengths,;
when tested, those selected bands also separated untreated and control plots (see Figs. 3 and 4). Thus, the clustering
based on all bandwidths may not be entirely due to other environmental factors

* This experiment will be repeated next year to reconfirm findings and to evaluate the effectiveness of drone imaging on
tobacco budworms and flea beetles.
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