AA SG – Objectives

- To perform regular proficiency testing of Multi-Residue Methods for the analysis of agrochemical residues on tobacco.

- To undertake joint experiments to resolve unanswered questions arising from proficiency tests; to expand knowledge base on agrochemical residues and their analysis.

- To produce and maintain a series of Technical Notes (on different agrochemical residue classes and selected individual compounds) to supplement the Technical Guideline and aid method development and improvement.
AA SG – Governance

Coordinator

- Masahiro Miyoshi – Japan Tobacco Inc., Oyama, Japan

Secretary

- Heather Westberg – Global Laboratory Services Inc., Wilson – NC, USA

Liaison

- Keisuke Nakayama – Japan Tobacco Inc., Tokyo, Japan

AA SG moved from Product Technology into Agronomy & Leaf Integrity Study Group in 2016
Proficiency test 2018 (FAPAS FT0114)

➢ CPAs defined in CORESTA Guide No.1 and its candidates
➢ Direction on reporting the sum of CPAs
 ● Residue definition and Conversion factor
➢ Test materials (artificially spiked and agronomically incurred)
 ● 17 CPAs spiked on blank Burley tobacco
 ● 12 CPAs in incurred Burley tobacco (provided by the RFT SG)
➢ 25 laboratories from 19 countries
➢ z-score evaluation
➢ FAPAS Report (May 2018)
➢ Analytical methods from the laboratories included in the FAPAS Report
z-score trend (FAPAS FT0101-FT0114)

Proportion of z-scores

% |z|≤2

% |z|>2

Analytes not found

<table>
<thead>
<tr>
<th>Year</th>
<th>Round 1</th>
<th>Round 2</th>
<th>Round 3</th>
<th>Round 4</th>
<th>Round 5</th>
<th>Round 6</th>
<th>Round 7</th>
<th>Round 8</th>
<th>Round 9</th>
<th>Round 10</th>
<th>Round 11</th>
<th>Round 12</th>
<th>Round 13</th>
<th>Round 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>10%</td>
<td>4%</td>
<td>5%</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td>6%</td>
<td>8%</td>
<td>8%</td>
<td>4%</td>
<td>6%</td>
<td>7%</td>
<td>3%</td>
</tr>
<tr>
<td>2006</td>
<td>30%</td>
<td>32%</td>
<td>30%</td>
<td>28%</td>
<td>22%</td>
<td>23%</td>
<td>14%</td>
<td>16%</td>
<td>16%</td>
<td>14%</td>
<td>17%</td>
<td>15%</td>
<td>22%</td>
<td>17%</td>
</tr>
<tr>
<td>2007</td>
<td>50%</td>
<td>64%</td>
<td>65%</td>
<td>69%</td>
<td>75%</td>
<td>74%</td>
<td>83%</td>
<td>78%</td>
<td>78%</td>
<td>78%</td>
<td>79%</td>
<td>79%</td>
<td>71%</td>
<td>80%</td>
</tr>
</tbody>
</table>
Follow-up of Joint Experiment Technical Study (JETS) 17/1 on Maleic Hydrazide

- Review of the outcome of JETS 17/1
- Tobacco plant metabolism study with ^{14}C maleic hydrazide

CORESTA Guide No. 5

- “Technical Guideline on Pesticide Residues Analysis on Tobacco and Tobacco Products” was revised in October 2018.

Technical Note #001 (Maleic hydrazide)

- Revised in October 2018
2018 AA SG meeting
❖ Gothenburg (Sweden) on June 27-28, 2018
❖ Hosted by Eurofins-Sweden
❖ 25 participants from 13 countries
Communication at external event

➢ Participated in EPRW 2018 (12th European Pesticide Residue Workshop) in Munich, Germany, from 22 to 25 May

➢ Poster presentation entitled “CORESTA Agrochemicals Analysis Sub-Group”

➢ After the EPRW 2018, several laboratories inquired for participating in the proficiency test.
Proficiency test 2019 (FAPAS FT0115)

➢ Spiked and incurred tobacco samples
➢ Incurred tobacco materials provided by the RFT SG

New Joint Experiment Test Study

➢ Matrix effect from DAC tobaccos
➢ Compare with the different tobacco types and solvent standards
Thank you for your attention!